Template-directed assembly of a de novo designed protein.

نویسندگان

  • Christina L Brown
  • Ilhan A Aksay
  • Dudley A Saville
  • Michael H Hecht
چکیده

Many naturally occurring biomaterials are composed of laminated structures in which layers of beta-sheet proteins alternate with layers of inorganic mineral. These ordered laminates often have structural and mechanical properties that differ significantly from those of nonbiological materials. An important step in the construction of novel biomaterials is the creation of composites wherein a de novo designed protein assembles into an ordered structure. To achieve this goal, we layered a de novo protein onto the surface of highly ordered pyrolytic graphite (HOPG). The protein was derived from a combinatorial library of novel sequences designed to fold into amphiphilic beta-sheet structures. Atomic force microscopy reveals that the protein assembles on the HOPG surface into ordered fibers aligned in three orientations at 120 degrees to each other. The symmetry and extent of the ordered regions indicate that the hexagonal lattice underlying the graphite surface templates assembly of millions of protein molecules into a highly ordered structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

A de novo designed template for generating conformation-specific antibodies that recognize alpha-helices in proteins.

The generation of antibodies directed toward the surface-exposed regions of a protein using synthetic peptides as immunogens representing surface loops and turns has been widely successful. However, peptides representing alpha-helical regions are typically unstructured in solution and unable to produce antibodies that recognize alpha-helices in native proteins. We describe a de novo designed pa...

متن کامل

Template assisted protein de novo design

The ultimate goal in protein de novo design is the Construction of artificial proteins exhibiting tailor-made structural and functional properties. To create nativelike macromolecules in copying nature's way has proven to be difficult because the mechanism of folding in its complexity has yet to be unravelled. In the present review we describe a conceptually different approach in protein design...

متن کامل

Peptide–oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of pe...

متن کامل

CABS-fold: server for the de novo and consensus-based prediction of protein structure

The CABS-fold web server provides tools for protein structure prediction from sequence only (de novo modeling) and also using alternative templates (consensus modeling). The web server is based on the CABS modeling procedures ranked in previous Critical Assessment of techniques for protein Structure Prediction competitions as one of the leading approaches for de novo and template-based modeling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 24  شماره 

صفحات  -

تاریخ انتشار 2002